Evolution of Plate Design and Function -Indications for Locked Plating-

Uğur GÖNÇ, MD

Çankaya Hospital
Dept. Orthopedics and Traumatology
Ankara, TURKEY

AO Trauma Advanced Course Krakow, 2014

Learning Outcomes

- Spectrum of fixation methods using different plates
- Evolution of plates
 - Biomechanical considerations
- Mechanics of locking head screws
- Indications for locked plating
- Correct application of locked plating

Historical implants

Original AO Principles (1958)

- 1. Anatomical direct reduction
- 2. Rigid fixation with fracture compression
 - Stable internal fixation
- 3. Preservation of blood supply and soft tissues
- 4. Early active pain-free mobilization

Lag screw

The lag screw is the basic tool used to create interfragmentary compression

Round-hole plate (1958)

Axial compression could only be obtained using the external compression device

Dynamic compression plate (DCP)

🔑 Aotrauma

plate

Plate Function.

- Compression
- Protection neutralization
- Buttress antiglade
- Tension band

Compression plate

- Absolute stability
- Direct healing
- Transverse or oblique 2-part fractures
- Screws compress plate to bone

Compression plate

Neutralization Plate

Protects interfragmantery lag screw(s)

• ↓ rotational and axial forces

Buttress Plate

- Displacement in one direction
- Resists axial loading (antigliding)
- Metaphyseal fractures ("B" type partial articular)

Tension Band Plating

- Eccenterically loaded bone
- Plate on tension (convex) side
- Compression at concave side

Wedge Fractures

More soft tissue stripping

Lag screw and neutralization

Comminuted Fractures?

- Require substantial soft tissue disruption
- Bone grafting on contralateral side

Problems with Absolute Stability

- Too extensive surgery
- Periosteal stripping
- Soft tissue damage
- Too many implants

- Delayed union
- Implant failure
- Nonunion
- Wound problems and Infection

Biological Solutions

- New plate designs
- New surgical techniques

Traditional Compression Plate

Plate pressure - necrosis

Limited contact DCP (LC-DCP)

🔎 Aotrauma

Plate Design

- Gradual evolution
- Minimize detrimental effects on bone

Point-contact fixator (PC-Fix)

An evolutionary breakthrough

New Surgical Techniques

- Relative stability concept
- Bridge plating
- Minimally invasive surgery
 - Indirect reduction
 - Percutaneous plating

Bridging Techniques

Bridging Plating

Internal extramedullary splinting

Long plate

Less screw

Indirect Reduction

- Functional reduction to restore
 - Alignment
 - Length
 - Rotation
- No anatomical reduction of the fragments

MIPO

Spectrum of stability

Compression
Neutralization
Buttress
Tension band

Bridge

AO Principles now!

1. Reduction

- Anatomical → articular, simple fractures, forearm
- Functional → comminuted meta-diaphyseal fractures

2. Adequate fixation

- Absolute or relative stability depending on the fracture pattern
- 3. Preservation of blood supply and soft tissues
- 4. Early active pain-free mobilization

LISS "Less Invasive Stabilization System"

- Designed for MIPO
- Internal fixator

LISS - DF

LISS - PLT

LISS

Locking head screw

Self-drilling, self-tapping

LISS - DF

LISS - DF

LISS - DF

Locking Compression Plate (LCP)

Different types of screws

Conventional screws

Cortex screw (with or without shaft)
Cancellous bone screw (with or
without shaft)

Locking head screws (LHS)

Self-tapping LHS Self-drilling, self-tapping LHS

Difference of Function

Compression plate

Force Transmission by Bone to Plate Friction

Locked plate

Force Transmission through Locking Head Screw

Non-contact Plate

Locked plate does not compress underlying bone !!

Advantages of LHS

- No compression of periosteum
 - Protects blood supply
- Angular stability
- Better anchorage in osteoporotic bone
 - Less primary destruction of thread in the bone
 - Higher resistance against bending forces

Conventional Screws in Osteoporosis

LHS in Osteoporosis

LHS-Plate Unit

LHS-Plate Unit.

No Bony Contact

Preserved periosteal circulation

Primary Loss of Reduction

- No compression of the plate to the bone
- No contouring necessary in metaphyseal region
- Advantageous in MIPO

Secondary Loss of Reduction

- Angular stability
- Short epi-metaphyseal fragments
- Osteoporotic fractures

Application of LCP

• When ?

• Where ?

How ?

When?

Anatomical region

 \rightarrow

Periarticular / metaphyseal fx

Not suitable for IM nail

Fracture pattern

 \rightarrow

Comminuted fx

ightharpoonup Bridge plating ightharpoonup relative stability

Bone quality

 \rightarrow

Osteoporosis

Angular stability

Surgical technique

 \rightarrow

MIPO

No 1º loss of reduction

Special situations

 \rightarrow

Periprosthetic fx

Monocortical screw

Do not mix things up!

Implants

Surgical technique

Biomechanical principles

LCP for Absolute Stability

As a conventional plate, using conventional screws

LCP for Absolute Stability

For poor bone quality

LHS for protection in osteoporotic bone especially in upper extremity

Neutralization

- Free lag screws
 - Absolute stability
- Neutralization with locked plate
 - Less periosteal compression
 - No plate contouring
 - Angular stability in poor bone

LCP for Relative Stability

Bridging plating

As an internal fixator, using locking head screws

Where?

- Proksimal humerus
- Humeral shaft
- Distal humerus
- Distal radius
- Proximal femur
- Distal femur
- Proximal tibia
- Distal tibia
- Hand
- Foot

Anatomically Preshaped Plates

Standard plates

(CCCCCC)

Special and anatomically preshaped plates

Proximal Humerus

- Poor bone quality
 - Angular stability
 - LHS in different directions
- MIPO

Proximal Humerus

MIPO technique

Humeral Shaft

- MIPO
- Rotational stability

Distal Humerus

- Anatomically preshaped plates
- Short distal fragments
 - Angular stability

Distal Radius

Volar plating

- Short segment
- Dorsal comminution
- Osteoporosis

Lower Extremity

- Periarticular / metaphyseal fx
 - Short segment
 - Osteoporosis
 - Comminution
- Bridging plating
 - Relative stability
- MIPO

MIPO

Intraarticular Involvement

- Intraarticular component
 - Lag screw → absolute stability
- Metaphyseal component
 - Bridging → relative stability

Intraarticular Involvement

Periprosthetic Fractures

Diaphyseal Fractures

When you cannot use IM nailing

- Multiple injured patients
- Open physis
- Narrow canal

Polytrauma

Pediatric

Narrow Canal

How?

Pre-operative planning

- Plate length
- Screw positon
- Number of screws
- Screw length

Plate Length

Screw Position.

Avoid short "middle"

Implant Choice

- Plate length
 - Comminuted → 2 or 3 X fx length
 - Simple → 8 or 10 X fx length
- 3 4 empty holes
- Number of screws
 - Lower ex. \rightarrow 2 3 in each segment
 - Upper ex. \rightarrow 3 4 in each segment
- Plate-screw density 0.40
- Anatomical plates in metaphysis

Hybrid use of screws

- Intraarticular fractures
 - Absolute stability
- Reduction
 - Anatomically preshaped plates
 - Big butterly fragment
- Articular orientation of fixed angled screw

Hybrid use of screws

Avoid monocortical screws

Working Length

sufficient working length

insufficient working length

Malreduction

Locked plates don't help reduction !!

Careful indirect reduction

Take home messages

- Plate name ≠ plate function
- Any plate can be used in many ways
- Plate function is dependent upon:
 - Design
 - Method of application

Take home messages

- Evolution of plates: mechanics -> biology
- Comminuted fractures
 - Bridging plating → biological fixation
- Locked plating
 - Osteoporosis; short metaphyseal segments
 - MIPO

– Planning !!

- Understanding the principles
- Good functional reduction
- Correct choice of implant and application

