Intertrochanteric Fractures Treatment Options and Outcomes

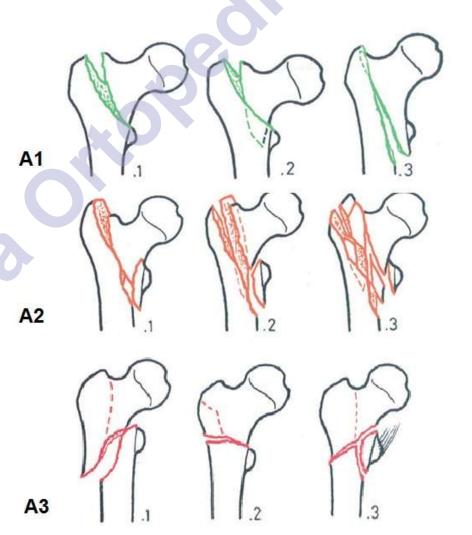
Uğur GÖNÇ, MD

Çankaya Hospital
Dept. Orthopedics and Traumatology
Ankara, TURKEY

AO Trauma Advanced Course Krakow, 2014

Learning Outcomes

- Assess different injury patterns
- Define unstable fractures
- Compare treatment options
- Identify factors associated with good outcome

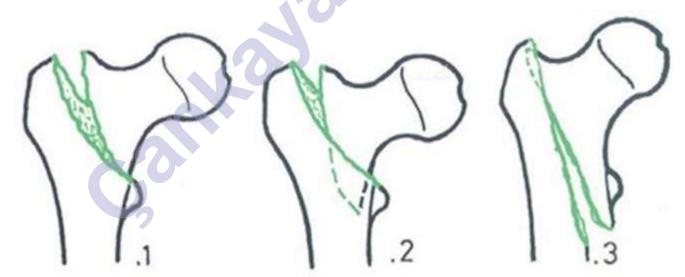

AO Classification 31-A

31-A1 simple

32-A2 multifragmentary

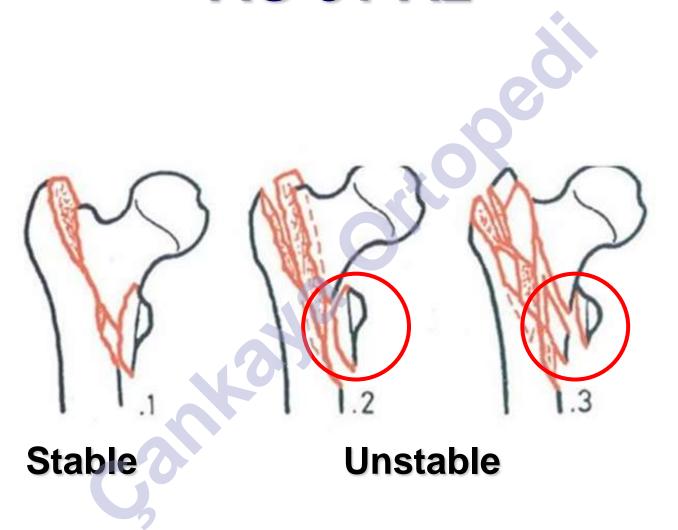
32-A3

 intertrochanteric
 -reverse obique

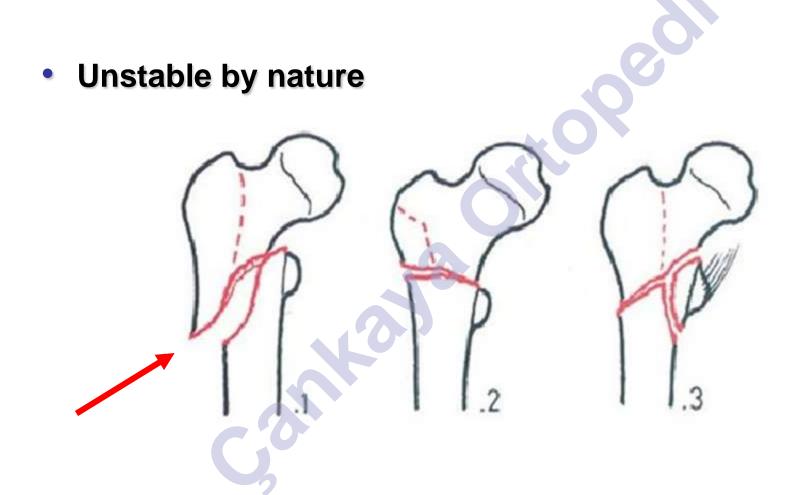


AO 31-A1

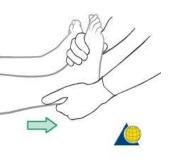
Typically considered as "stable"


No posteromedial comminution

Intact lateral buttress



AO 31-A2

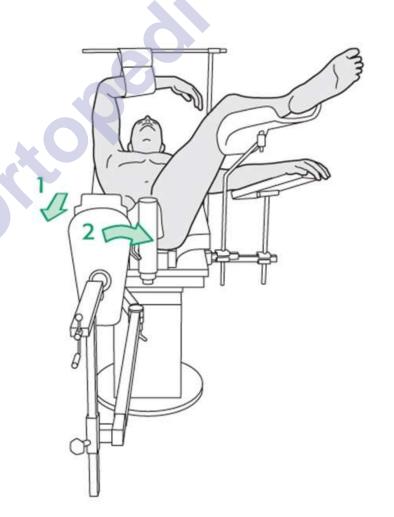


AO 31-A3

Traction X-ray

Role of Surgeon

- Restore mobility and function
- Decrease morbidity and mortality
- Minimize surgical complications


Good Reduction

- Restores hip biomechanics
- Reduces stress on the implant
- Leads to rapid and complete healing

Patient Positioning

- Fracture table
- Supine
- Indirect reduction
- Usually by internal rotation

Open Reduction

- Limetted access to fragments
- Prefer percutaneous techniques

Varus Malreduction

- ↑ load on proximal femur
- ↑ moment arm on implant
- ↑ risk of implant failure

Stable Fractures A1 & A2.1

Sliding Hip Screw

- Gold standard
- Frequently used
- Low cost
- Easy technique

Sliding Hip Screw


- Accurate reduction
- Precise implant placement
- Deep and central positioning of lag screw

Tip-apex Distance

Baumgaertner et al, JBJS Am, 1995

 \leq 25 mm \rightarrow no cut-outs

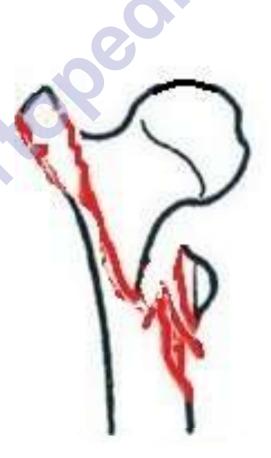
$$TAD = \left(X_{ap} \times \frac{D_{true}}{D_{ap}}\right) + \left(X_{lat} \times \frac{D_{true}}{D_{lat}}\right)$$

Tip-apex Distance

Stable Fractures A1 & A2.1

Unstable Fractures A2.2 & A2.3

Sliding hip screw


Intramedullary nail (PFN,Gamma nail, IMHS, etc..)

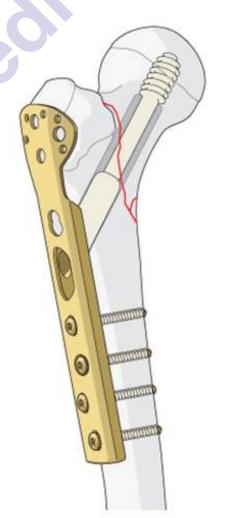
Sliding Hip Screw

 Historically used for both stable and unstable fractures

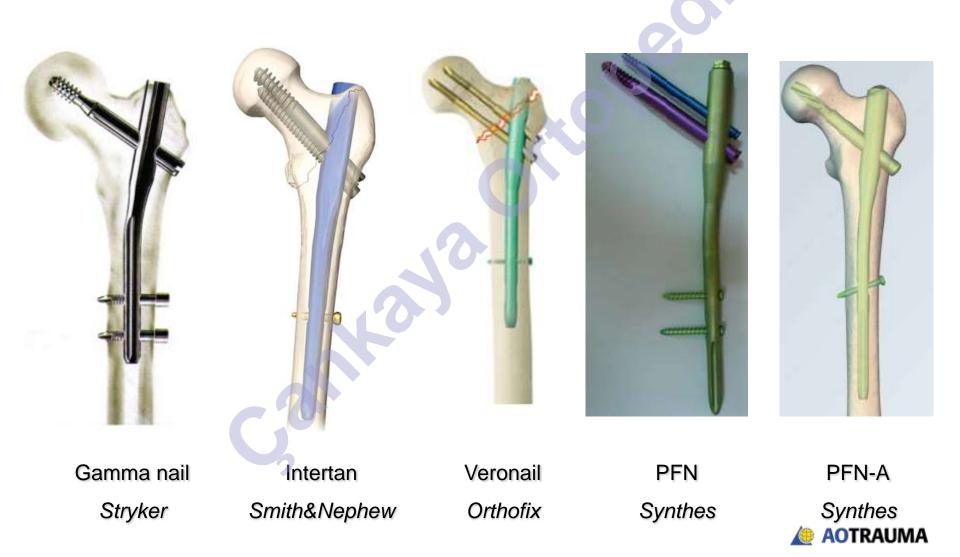
- Designed to impact
- Maintenance of normal anatomy is sacrificed to prevent cut-out

A-2.2 & A-2.3 Fractures

- Posteromedial comminution
- Thin lateral buttress
- High risk of intraoperative or postoperative lateral wall fracture
- Malunion → shorthening, abd. weakness



Trochanteric Stabilization Plate


- Modification of SHS
- Provides proximal buttress
- Prevents lateralization of trochanter
- Resist medialization of shaft

Bong et al, J Trauma, 2004

Intramedullary Nails

Intramedullary Nails

Theoretical advantages

- Smaller incisions
- Less blood loss
- Less muscle stripping
- Better functional outcome

Intramedullary Nails

Mechanical advantages

- Shorter lever arm
- ↑ resistance at bending forces
- Limits fracture collapse
 - Acts as a strut that obstructs sliding

IM Nail vs SHS

No difference by means of

- Complications
- Fracture healing
- Reoperations
- Mortality

Adams et al, J Orthop Trauma, 2001 Saudan et al, Injury, 2002 Harrington et al, Injury, 2002 A-yassasri et al, Injury, 2002 Audige at al, Int Orthop, 2003 Crawford et al, Injury, 2006 Strauss et al, J Trauma, 2006

IM Nail vs SHS

Intramedullary nails

- Shorter surgical time
- Less blood loss
- Faster return to preop ambulation

Nuber at al, Unfallchirurg, 2003 Utrilla et al, J Orthop Trauma, 2005 Pajarinen et al, JBJS Br, 2005

Gamma and Other Cephalocondylic IM Nails vs Extramedullary Implants for Extracapsular Hip Fractures

Parker MJ, Handoll HH

Cochrane Database of Systemic Reviews, 2005

Cochrane Database of Systemic Reviews, 2005

- 24 PRCT comparing IM nails and SHS for intertrochanteric fractures
- No differences between the techniques in terms of mortality, infection or medical complications
- IM nails were associated with a higher risk of intra and postoperative femoral fracture

Cochrane Database of Systemic Reviews, 2005

- Does not include full length nails
- Does not include more recent changes in nail design
- Studies do not differentiate stable and unstable fractures
- No data on functional outcomes and malunion

Gamma Nails Revisited: Gamma Nails Versus Compression Hip Screws in the Management of Intertrochanteric Fractures of the Hip: A Meta-Analysis

Mohit Bhandari, MD,* Emil Schemitsch, MD,† Anders Jönsson, MD, PHD,‡ Michael Zlowodzki, MD,‡ and George J. Haidukewych, MD§

J Orthop Trauma - Volume 23, No 6, July 2009

Gamma vs SHS

- 25 randomized comparative studies 1991-2005
- 4.5 increase risk of femoral fracture in short IM nails
- Recent studies show no difference between IM nails and SHS in regard to femoral fracture
- Recent nail design changes have <u>reduced</u> the risk of femoral fracture

Bahandri et al, 2009

A Comparison of the Long Gamma Nail with the Sliding Hip Screw for the Treatment of AO/OTA 31-A2 Fractures of the Proximal Part of the Femur

A Prospective Randomized Trial

By Tristan M. Barton, MBChB, MSc, Robert Gleeson, FRCS(Orth), Claire Topliss, FRCS(Orth), Rosemary Greenwood, MSc, William J. Harries, FRCS(Orth), and Timothy J.S. Chesser, FRCS(Orth)

JBJS Am - Volume 92, No 4, 2010

- No significant difference between reoperation rates
- Tip-apex distance corrolate with implant cut-out rate
- No significant differrence between groups in terms of any secondary outcome measures

Unstable Fractures A2.2 & A2.3

Trend to IM Nailing?

Technical Difficulties

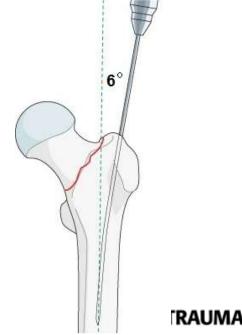
- Risk of gluteus medius injury
- Difficulties of proximal fragment reduction
- Intraoperative femoral fracture

Reduction

- Nail does not help reduction
- Fracture must be reduced before nailing
- Good reduction
 - Patient positioning
 - Correct entry point

Patient Positioning

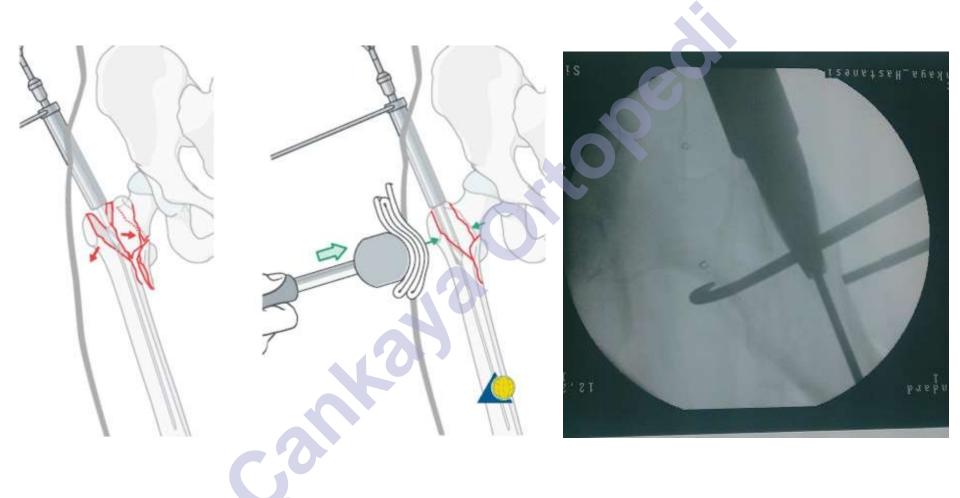

- Leg adducted
- Chest shifted 10-15 off midline
- Varus malalignment
 - ↑ traction
 - Percutaneous pins as joystick
- Lateral decubitis positioning?



Entry Point

- At or medial to the tip
- Lateral → varus
- Check both AP and lateral views

Proximal Reaming


- Ream slowly
- Ream to the recommended depth
- Do not ream through fracture line
 - Fracture gap
 - Varus malalignment

Reduction Tools

Reduction Tools

Femoral Fracture

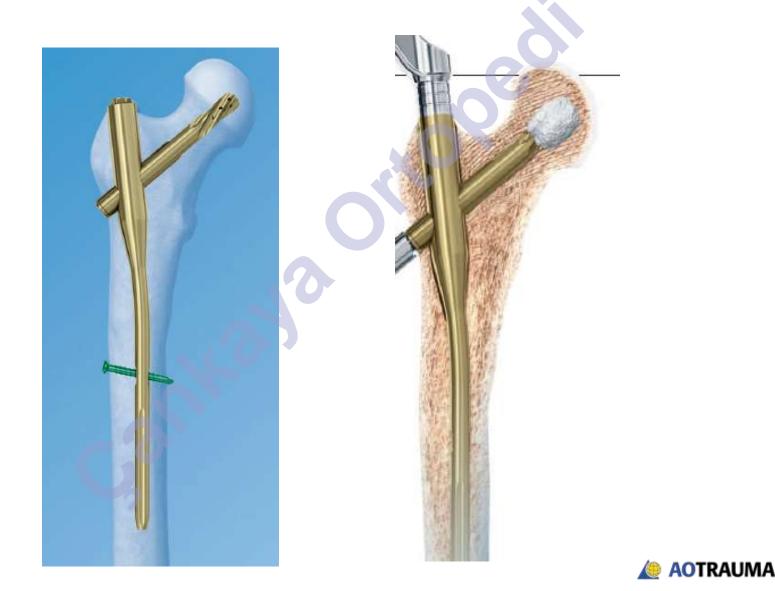
Intraoperative

- Nail design
- Bad reduction
- Narrow canal
- Increased femoral bowing

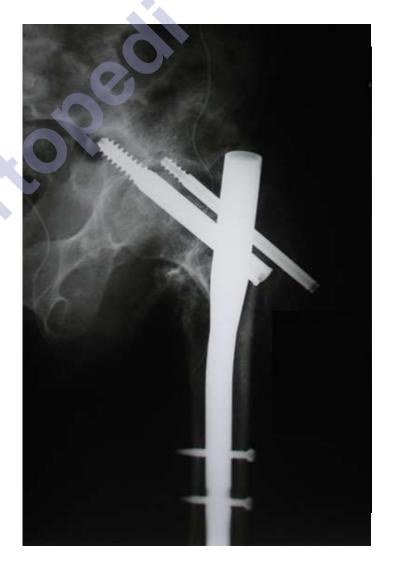
Postoperative

Nail design

Helical Blade


• Biomechanically increased resisitence to failure Strauss et al, Injury, 2006

No enough clinical studies

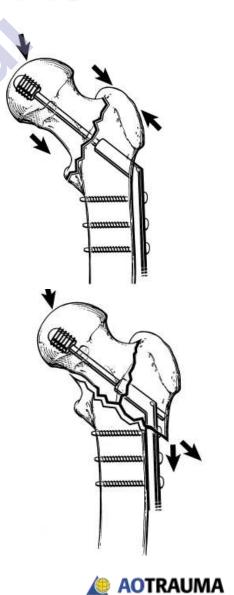


Cement Augmentation

Implant Failure

- Cut-out from femoral head
- Z-effect in two screw designs
- Similar rates as SHS (~ 3%)
- Tip-apex distance ≤ 25 mm

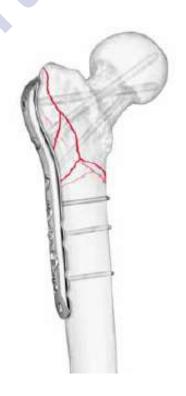
Tip-apex Distance



Unstable Fractures A3

- No lateral wall integrity
- Axial loading → medial displacement
- SHS must be avoided
- Fixed angled device or IM nail

Haidukewych et al, JBJS Am, 2001



Fixed Angled Devices

- 95º blade plate
- Dynamic condylar screw (DCS)
- Proximal femur locking plate

Unstable Pertrochanteric Femoral Fractures

Philip J. Kregor, MD, * William T. Obremskey, MD, MPH, * Hans J. Kreder, MD, MPH, † and Marc F. Swiontkowski, MD.‡

J Orthop Trauma • Volume 19, Number 1, January 2005

- Unacceptable failure rates with SHS
- Failure rate is less likely with 95° angled plate
- Lower reoperation rate with IM nails
 - Abductor function?
 - Functional outcomes ?

Unstable Fractures A3

Take home messages

- Assessing the fracture pattern is crucial
- Stable A1 fractures
 - SHS is gold standard
- Unstable A2 fractures
 - Clinical evidence → SHS = IM nail
 - Lateral wall integrity is important
- Unstable A3 fractures
 - IM nails are superior
 - Fixed angled plates

Take home messages

- Accurate fracture reduction
- Precise insertion of implant
- Good surgical technique
- Early tolerated weight wearing

