

Overview of mesenchymal stem cells & scaffolds for cartilage repair

Prof. Reha N. Tandogan, M.D.

Ortoklinik / Çankaya Orthopaedics, Ankara

Dr. Asım Kayaalp

Dr. Mahmut Kış

Dr. Uğur Gönç Dr. Mazhar Tokgözoğlu Dr. Muharrem Yazıcı

Dr. Şenol Bekmez

Dr. Mümtaz Alpaslan

Dr. Kürşat Teker

Dr. Altuğ Tanrıöver

Dr. Bülent Atilla

Fzt. İpek İkiz

Dr. Metin Polat

Articles on "mesenchymal stem cells in cartilage repair"

A service of the U.S. National Institutes of Health

Example: "Heart attack" AND "Los Angeles"

Search for studies: Search

Advanced Search | Help | Studies by Topic | Glossary

Now Available for Public Comment: Notice of Proposed Rulemaking (NPRM) for FDAAA 801 and NIH Draft Reporting Policy for NIH-Funded Trials

Find Studies About Clinical Studies Submit Studies Resources About This Site

Home > Find Studies > Search Results

Text Size ▼

33 studies found for: mesenchymal stem cell AND cartilage

Modify this search | How to Use Search Results

Mesenchymal stem cells

- Embriyonic
 - Immunogenic & Tumorigenic
 - Ethical concerns
- Adult
 - Bone marrow
 - Adipose tissue
 - Synovium
 - Peripheral Blood
- Scarce & scattered pericytes: % 0.001 of mononuclear cells in bone marrow
 - Richter W. J Intern Med. 2009; 266(4):390-405.

Mesenchymal stem cells

- Capacity for self-renewal & self-maintenance
- Potential for differentiation into cells forming multiple mesodermal tissues including chondrocytes
- Migrate toward injured tissues (homing/ trafficking)
 where they display trophic effects
- Anti-inflammatory, angiogenic, anti-apoptotic & immunomodulating effects
 - Filardo G,(2013), Myers KR (2013), Strioga M(2012)

Grassel S. Tissue-Engineering Strategies to Repair Chondral and Osteochondral Tissue in Osteoarthritis: Use of Mesenchymal Stem Cells. *Curr Rheumatol Rep* (2014) 16:452

MSC for Cartilage Repair

Traumatic defects & OCD

Osteoarthritis

Immunosuppresive & Anti-inflammatory Role in Rheumatoid Arthritis

Preparation

Cell culture & expansion

- 2 step procedure
- Requires GMP labs
- Regulatory problems
- Expensive

Cell concentration

- One step procedure
- Can be performed in OR
- Less regulatory problems

Growth factors/mechanical factors that promote chondrogenesis

- TGF-B 1 & 3
- BMP- 2 & 7
- FGF-2
- IGF-1
- Kartogenin
- Chondroitinase A,B,C
- Hypoxia /Heat shock
- Hydrostatic pressure

- Dexamethasone
- PRP
 - Fortier LA .CORR 2011; 469(10):2706
 - Montoya Biol Res 46, 2013, 441

Delivery

- Surgical implantation with or under a scaffold
 - Direct & targeted application
 - Can be combined with concommittant procedures
 - ... but invasive

Delivery

- Intra-articular injection
 - Less invasive but imprecise and not targeted
 - Autocrine and paracrine effects
 - Mostly for OA
 - Augmentation of primary surgery

Wong KL: Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up. *Arthroscopy*. 2013;29(12):2020-8.

- 56 patients undergoing HTO & microfracture
 - 28 underwent HA injection 3 weeks post-op
 - 28 underwent cultured BMSC 3 weeks post-op

- Both groups improved
- MSC group had significantly better IKDC Lysholm, Tegner & MOCART scores

Kim YS. Does an injection of a stromal vascular fraction containing adipose-derived MSC influence the outcomes of marrow stimulation in osteochondral lesions of the talus? A clinical and magnetic resonance imaging study.

Am J Sports Med. 2014;42(10):2424-34.

- 50 ankles underwent arthroscopic microfracture for talus OCL
- 26 received adipose derived MSC injection

- Both groups improved, but a-MSC had better VAS, AOFAS, Tegner & MOCART scores
- a-MSC injection group had better outcomes in older patients & larger lesions

Vehicle

- Pure cell suspension/Spheroids
- Carbohydrate based scaffolds
 - Agarose, alginate
 - Chitosan/chitin
 - Hyaluronate
 - Fibrin glue
- Protein based scaffolds
 - Collagen membrane/gel
 - Fibrin
 - Gelatin
- Synthetic polymers
 - (PLA,PGA, Polycaprolactone
- Hydroxyapatite /TCP
- Amniotic membrane

Bioactive

Biodegradable

Inert

Clinical reports of cultured/concentrated MSC for focal cartilage defects

Author	Number of patients	Cell origin	Follow up	Year
Haleem	5	BMSC+fibrin glue scaffold	12	2010
Centeno	1	BMSC	2	2008
Kuroda	1	BMSC+ collagen gel	12	2007
Wakitani	2	BMSC+ collagen gel	17-27	2007
Wakitani	2	BMSC+ collagen gel	60	2004

Gopal K. Advances of human bone marrow-derived mesenchymal stem cells in the treatment of cartilage defects: A systematic review.

Exp Biol Med 2014;239(6):663-669.

- 996 studies on BM-MSC for cartilage repair
- 6 clinical studies
 - Cohort observational trials 2
 - Case series 3
 - Case report 1
- Good cartilage repair, minimal complications
- Better than cell free scaffolds, similar to ACI
- Hyaline like cartilage ?

Clinical reports of cultured/concentrated MSC for OA

Author	Number of patients	Cell origin	Follow up	Year
Emadedin	6	BMSC	12	2012
Kasemkijwattana	2	BMSC	31	2011
Davatchi	4	BMSC	12	2011
Wakitani	24	BMSC	16	2002
Wong	56	BMSC	12	2013
Koh	50	ADMSC + PRP	16	2012
Koh	30	ADMSC + PRP	24	2013
Koh	18	ADMSC+PRP	26	2013

Koh YG. Second-Look Arthroscopic Evaluation of Cartilage Lesions After Mesenchymal Stem Cell Implantation in Osteoarthritic Knees.

Am J Sports Med. 2014; 42(7):1628-1637.

- Clinical results not correlated with anatomical results
- 2nd look arthroscopy in 34 patients after MSC implantation for OA
- % 94 patient satisfaction
- %76 abnormal or severely abnormal cartilage repair (ICRS)

Nejadnik H. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study.

Am J Sports Med. 2010;38(6):1110-6.

- 36 ACI vs. 36 cultured BMSC
- No difference in clinical scores at 24 months
- BMSC better in older patients
- Better results in younger patients and smaller lesions

Giannini S. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation.

Injury. 2010 ;41(11):1196-203.

- Comparison of 10 open ACI, 46 arthroscopic
 ACI & 25 BMC in talar dome OCL
- 2nd look at arthroscopy 1 year
- Similar clinical improvement
- "Hyaline like" cartilage in biopsies

Bone marrow concentrate

- One-step procedure
- Contains: mesenchymal stem cells (MSCs), hematopoetic stem cells, platelets (containing growth factors), and cytokines
- Chondrogenic potential in the articular environment
 - Cavallo c. J Biomed Mater Res A. 2013;101(6):1559-70.
- Usually combined with a matrix & PRP

Basic science

- Better quality of cartilage regeneration in animal experiments
 - Betsch M. PLoS One. 2013 Aug 12;8(8):e71602.
 - Fortier LA: J Bone Joint Surg Am. 2010;92:1927–1937.
 - Zhao Q. J Mater Sci Mater Med. 2013;24(3):793-801.
- No effect of BMC on cartilage repair
 - Jagodzinski M. Tissue Eng Part C Methods. 2014;20(3):215-26.

Clinical reports of Bone Marrow Concentrate for focal cartilage defects

Author	Number of patients	Cell origin	Follow up	Joint
Gigante	5	BMC+Collagen membrane	12	Knee
Enea	9	BMC+PGA-HA matrix	24	Knee
Giannini	48	BMC+HA membrane	24-35	Talus
Skowronski	54	BMC+Collagen membrane	12-60	Knee
Buda	20	BMC+HA membrane	24	Knee

Problems

- In vitro/in vivo phenotype maintenance
 - Shen Y. Current Stem Cell Research & Therapy, 2014, 9, 254-267
- Hypertrophy
 - Giannini S: Injury. 2010;41(11):1196-203.
- Ossification
 - Somoza RA: Tissue Eng Part B Rev. 2014

Safety

- Spontaneous malignant transformation of adult MSC in long term in vitro cultures
 - Rubio D. Cancer Res. 2005;65(8):3035-9.

- No tumors or infections in 41 patients at 75 months (range 5-137)
 - Wakitani S: J Tissue Eng Regen Med. 2011;5(2):146-50.

MSC: Take home messages

- Many preclinical studies reporting benefit
- Few clinical studies have promising results but: small number of patients, short followup, lack of control group
- Repair tissue is still more fibrocartilage than hyaline cartilage

Unknown..

- Best source of cells ?
- Optimal number of cells ?
- Which method of delivery is superior?
- Are cultured cells better than BMC?
- Which type of scaffold ?
- Should we add growth factors? Mechanical stimulation?
- Is the repair tissue durable ?

Cell Free Scaffolds

Autologous Matrix Induced
Chondrogenesis (AMIC)
Matrix Assisted Chondrogenesis

What is wrong with microfracture?

- Not durable, results deteriorate after 5 years
 - Goyal D. Arthroscopy. 2013;29(9):1579-88.
 - Mithoefer K. Am J Sports Med. 2009;37(10):2053-63.
- Regenerate is always fibrocartilage
- Worse results in large & uncontained defects,
- Worse results in older patients & high BMI
 - Mithoefer K. J Bone Joint Surg Am. 2005; 87(9):1911-20.

Post-op 1 year microfracture

Ossification

Andreas H. Gomoll

Knee Surg 2012;25:9-16

Cell free scaffolds

- Collagen
 - Chondroguide :Type I/III porcine collagen
 - Novocart : Collagen 3D matrix
- Hyaluronan based
 - Chondrotissue : PGA polymer-Hyaluronan
 - Hyalofast : Hyaff
- Hydrogels
 - Cart-Patch: Agarose-alginate
- Synthetic
 - Alpha Chondroshield: PGA
 - CAIS : Polycaprolactone-PGA
- Composite
 - BST Cargel: Chitosan, Collagen, HA

Matrix induced chondrogenesis

- Better histological & immunohistochemistry results compared to microfracture alone in sheep
 - Erggelet C. J Orthop Res. 2009; 27(10):1353-60.
 - Gille J. Cartilage. 2010;1:29–42.
- Matrix serves as a bioreactor, promotes cell migration & chondrogenesis, protects the repair tissue
 - Erggelet C. Biomaterials. 2007;28(36):5570-80.
 - Kramer J. Cell Mol Life Sci. 2006;63(5):616-26.

Clinical results of AMIC using Chondrogide

Author	Number of patients	Follow-up	Results
Gille J	27	37	87% good clinical results
Gille J	57	24	Continued benefit at 2 years Defect size not important
Schiavone Panni A	17	36	77% good results
Kusano T		29	Incomplete & inhomogenous MRI filling

Clinical results of AMIC using Chondrotissue

Author	Scaffold	Number of patients	Follow- up Months	Results
Siclari A	Chondro tissue	52	60	Significant clinical improvement 20/21 complete MR coverage
Siclari A	Chondro tissue	52	24	Sustained 2 year good results Biopsies in 4 pts hyaline like cartilage
Patrascu JM	Chondro tissue	1	24	Excellent clinical result & 2nd look arthroscopy hyaline like cartilage in biopsy

Online Submissions: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.5312/wjo.v5.i4.444 World J Orthop 2014 September 18; 5(4): 444-449
ISSN 2218-5836 (online)
© 2014 Baishideng Publishing Group Inc. All rights reserved.

ТОРІС НІСНІІСНТ

WJO 5th Anniversary Special Issues (5): Knee

Enhanced microfracture techniques in cartilage knee surgery: Fact or fiction?

Stefan Bark, Tomasz Piontek, Peter Behrens, Sabreen Mkalaluh, Deike Varoga, Justus Gille

Stanish WD. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial.

J Bone Joint Surg Am. 2013;95(18):1640-50

- 41 scaffold+microfracture
- 39 microfracture alone
- 12 months follow-up
- Clinical results equal
- Greater lesion filling and superior repair tissue quality in MOCART scores in the scaffold group

Anders SA. Randomized, Controlled Trial Comparing Autologous Matrix-Induced Chondrogenesis (AMIC®) to Microfracture: Analysis of 1- and 2-Year Follow-Up Data of 2 Centers. *Open Orthop J. 2013;7:133-43*.

- 38 patients
- Continued improvement at 1 & 2 years
- KOOS & Cincinnati scores similar in all groups
- No difference seen in MOCART scores & MRI characteristics

Matrix induced chondrogenesis

- Advantages
 - One step procedure
 - Cheaper than ACI/MACI
- Can be combined with BMC, PRP or MSC injections
 - Dhollander AA: Knee Surg Sports Traumatol Arthrosc. 2011;19(4):536
 - Steinwahcs MR:Arthrosc Tech. 2014 Apr 21;3(2):e279-82.
- Problems
 - Regenerate is still more fibrocartilage than hyaline
 - Gigante A: Int J Immunopathol Pharmacol. 2011;24(1 Suppl 2):69.
 - Ossification still a problem

Unknowns...

- What size of the lesion is appropriate?
 - Small medium ?
- Which scaffold is better?
- When should we add cells?
- What growth factors are helpful?
- Is it durable ?

Turkish Society of Sports Traumatology Arthroscopy & Knee Surgery

Cartilage Repair Committe

Thank you ... www.ortoklinik.com www.cankayaortopedi.com